e N96- 12921

-

CLIPS Interface Development Tools and Their Application

Bernard A. Engel !, Chris C. Rewerts, Raghavan Srinivasan,
Joseph B. Rogers, and Don D. Jones

Abstract

A package of C-based PC user interface development functions has been developed and integrated into CLIPS.
The primary function is ask which provides a means 1o ask the user questions via multiple choice menus or the key-
board and then retum the user response to CLIPS. A parameter-like structure supplies information for the interface.
Another function, show, provides a means to paginate and display text A third function, title, formats and displays
lile screens. A similar set of C-based functions that are more general and thus will run on UNIX and other
machines have also been developed. Seven expert system applications were transformed from commercial develop-
ment environments into CLIPS and utilize ask, show, and title. Development of numerous new expert system
applications using CLIPS and these interface functions has started. These functions greatly reduce the time
required to build interfaces for CLIPS applications.

Introduction

The Agricultural Engineering Department at Purdue University has been developing agricultural expert systems
(ES) applications since 1984. Numerous applications have been developed since that time including GMA (Grain
Marketing Advisor), DSS (Dam Site Selector), DBL-CROP (double crop soybean management ES), and MELON
(muskmelon disease diagnosis ES). The use of these and other applications has been limited because of runtime
licensing fees, inability to run on machines other than those running DOS, and difficulties with integrating applica-
tions with other software. In addition, the academic community has not been interested.in the paperwork associated
with the licensing arrangements of most ES development tools. Many of the commercial tools require development
and delivery on a single type of machine such as one that runs only DOS. In Indiana, the Cooperative Extension
Service (a large potential user for most agricultural ES) have UNIX machines. Therefore, many of the agricultural
ES that would be of interest to people in these offices will not run on their machines. The ES that are now being
developed often require integration with other computer tools. Most commercial ES development tools do not pro-
vide adequate facilities for integration. As a result of these problems, CLIPS was examined as a potential develop-
ment and delivery tool for agricultural expert systems applications.

One disadvantage of CLIPS, for our purposes, was the lack of a cost-free end-user interface for use with PC
compatible machines. The interface available for the PC version of CLIPS requires the purchase of a screen-
handling command library from a third-party vendor. End-users of ES produced with the interface provided would
have to pay a fee for its use. Also, it was more a development interface than an end-user interface. To avoid such
complications, we have built a set of interface functions and integrated them with CLIPS.

1 The authors are: B.A. Engel, Assistant Professor; C.C. Rewerts, Research Assistant; R. Srinivasan, Research Assistant; JB. Rogers, Al
Systems Programmer; and D.D. Jones, Professor. Agriculnral Engineering Department, Purdue University, West Lafayete, IN 47907

2 ask®, show®, and titie® Copyright 1950 Purdue Research Foundation.

458 Purdue lhterface - 1

User Interfaces

For a computer program to function, it must interface with an outside manipulator or controller. Some programs
are controlled by other programs. An interface needed in such situations can typically be described outright, in
well-defined terms. The interchanges will be predictable, because machines are involved. In a computer program
developed for use by humans, the interface becomes 2 much different issue. The operation of the interface has a
direct bearing on how well one can make use of the program. The user must be able to "run” the program while pro-
viding any needed inputs and making any requests for modification of runtime functions. There are many common
programs with simple operations that function automatically when invoked, such as using & or dir to list files in a
DOS directory. However, the programs we refer to in the context of this paper are application programs requiring
more user-machine interaction during program operation, such as an ES or simulation. In such cases, “the interface
is the system for most users” [1).

The Need for an End-User Interface Package

In developing numerous application programs for distribution to a large audience of users with a wide range of
computer backgrounds, we needed an interface package that could be incorporated into separate application pro-
grams. Of course, we were not the first to discover this need. In working with the design of several software pro-
jects, Faneud and Kirk [2] noted the following complaints:

a. Interface development was consuming a great part of the efforts of ES developers and represented a
significant portion of the resulting code - as much as 60%.

b. ES developers were usually inexperienced at interface design, and generally had no interest in becoming
experts in low level graphics or other interface tools.

c. There was no consistency of interfaces across applications.

d. It was difficult to provide multiple interfaces across applications.

Some of the benefits we hoped to gain by the development of a user interface that could be used by numerous appli-
cations included:

a. Users can employ a small number of computer concepts and syntactical rules, therefore they can concentrate
on the task.

b. Program designers find it convenient to reduce the number of situations in which the user can make errors.

c. Different applications using the same interface package will have the same "look and feel" to the user. Thus,
once a user becomes acquainted with an interface through the use of one application, the use of subsequent
programs with the same type of interface may be made simpler.

Implementation and Development Background

This paper documents a simple user interface and its integration into CLIPS. Although all examples and most
of the discussion of the user interface will revolve around its implementation within CLIPS, applications are not
limited to ES. Most computer applications designed for a general end-user audience require an interface of one sort
or another, With an ES, the operation typically starts with a question and answer session between the user and the
program, much like a human expert would use to ascertain the definition of the problem to be addressed. A good
interface package would allow the developer of the ES a straight-forward means to define how the ES should go
about the task of this interchange. We will describe how the interface and CLIPS communicate, how the interface
functions are used from within a CLIPS ES program, and how the interface presents its information and queries to
the end-user. :

459
Purdue Interface - 2

Appearance of Ask to the End-User

Our user interface is designed to use the graphics capabilities of the PC on which it is running, including high
resolution graphics, if available. The interface presents itself in color, if available. When graphic capabilities are
available on a given machine, provisions have been made to use graphic screens instead of, or in conjunction with,
the textual screens used for "help”, "why”, or the question prompt.

The layout of the ask interface screen consists of three areas:
1. Aninformation box,
2. The question prompt, and
3. An area for the input of the user’s answer.

The information box (Figure 1), located at the top of the screen, informs the user of the "help”, "why", and
"abort” keys (F1, F2, and ESC, respectively). Based on the type of question, the information box tells the user what
type of input is expected. In Figure 1, the input expected is a single selection from the three altematives in the menu
box. The second line in the information box gives brief instructions for selecting an answer.

F1: Help F2: Why ESC: Abort Imput type: Single selection
Move to Choice: 4, then press enter to select

What is the seepage potential of the soil
in the reservoir area?

slow
moderate

rapid

Figure 1. Layout of an ask question screen.

If the user presses the F1 or F2 key, the ask program switches to a display screen to print the information pro-
vided by the knowledge engineer for the particular question property structure. "Help" or "why” information may be
a graphic image, text, both, or neither. If the ESC key is pressed, the intent of the user to abort the program is
confired with a dialogue box. If confirmed, both the operation of the interface and the operation of CLIPS is
aborted.

The text of the question is printed in the question prompt area. Ask provides formatting to fit the text neatly on
the screen. Below the question prompt is the user input area. It will be a menu box if the question type requires
selection from a list of altematives. Two types of menus are available in ask, one allows the user to select a single
selection as an answer, and the other allows multiple selections. To select a single answer from the menu box, the
user moves to a choice with the mouse or "up-down" arrow keys to highlight a choice. When the user presses the
enter key, the highlighted selection is retuned to CLIPS. To select multipie answers from a menu. the user may
"mark" a highlighted selection with the "right” arrow key. All selections either marked or highlighted when the
"enter" key is hit will be retumed to CLIPS.

460
Purdue Interface -3

Menu selection is appropriate only when specific answers are expected. To obtain more open-ended responses,
ask can prompt for input of text or a number. In this case, a simple prompt for the information is printed in the user
input area. Ask can be given a range for numerical entry, and will constrain the user’s entry as needed.

Errors

All interface functions are equipped with abilities to detect and report errors. An error is generated when the
information being passed to a function is inconsistent with the expected format. (These errors will generally pertain
to problems most likely to arise during development of an ES). The action taken by the functions in case of an error
is to abort all processes and print a diagnostic statement.

Using Ask in an Expert System

Ask is invoked with a frame-like parameter structure that passes it the information it needs to operate. One of
the first things that must be determined is the type of question screen it is to construct. As mentioned above, the
four types of question screens ask generates are:

1. Multiple choice/single answer,
2. Multiple choice/multiple answer,
3. Userinput of text,
4. User input of numeric data.
For each question screen, a data structure for the ask function must be written. The data structures are stored in
CLIPS as facts. The data structure will tell the ask function how to formulate the question, what kinds of extra

information to provide to the user, how to retrieve the user’s answer, and how to retum the resulting answer to
CLIPS.

Creating Instructions for Ask

We will refer to the above-mentioned data structures as "question property structures”. CLIPS facts are stored
as "fields", where each field is a word, number or "string” (a group of words or numbers contained in double
quotes). When ask is given a question property structure from which to build a question prompt, it examines the
fields one by one, looking for the information it needs. '

There are two types of fields expected.

1. labels: Labels are key words used to identify the information that may follow in the next field(s). The ask
function expects exactly thirteen labels.

2. values: Values are the actual information ask will use to construct and ask the given question. The ask func-
tion requires some labels to be followed by values, some label’s values may be a certain type, and some may
be ignored by the ask function (because they may apply elsewhere in the ES or are reserved for a future use).

As ask reads through the labels and values of a question property structure, it deduces what type of question it is
to ask, based on the values. Table 1 is the list of labels and values, and how they are used by the ask function.
Constructing Question Property Structures

To use the ask function in 2 CLIPS program, question property structures must be entered as facts. Examples 1
through 4 demonstrate question structures in their format as facts. Each example will produce a different type of
ask question screen.

461
Purdue Interface - 4

Example 1.

(site-name

prompt

"What is the name of the site you wish to evaluate?”
expect

help

why

value

value-type

default

range
certainty-range
unknown

gprompt ghelp gwhy
)

The above example illustrates a question property structure. The first field, (in this case, site-name), can be any
word, which is to say, any combination of legal characters, with no spaces. The purpose of this word is to label the
question property structure, so that a rule could be constructed to look for a fact starting with the given word, which
it could match and fire (this is explained further in the discussion of the example rule, below).

This example demonstrates the simplest type of question property structure, because it uses the least amount of
information allowed: the labels, and a string value (the question) for the prompt. Values for all parameters except
prompt are optional. Since no values are given for the expect label, ask deduced the question was to be answered by
user input of text. To answer the question from the ask-generated interface, the user types in an answer, and presses
the "enter” key.

Example 2.

(seepage-rate

prompt

"What is the seepage potential of the soil in the reservoir area?"
expect

slow moderate rapid

help

"A soil survey of the proposed reservoir site should provide
information concerning the seepage rate of soil at the site.
However, if the soil survey does not provide this information
answer the question as not being certain and additional
questions will be asked to evaluate the seepage rate."

why

value

value-type SINGLEVALUED

default

range

certainty-range

unknown

gprompt ghelp gwhy

)

462
Purdue Interface - §

There are three primary differences between this question property structure (Example 2) and the last example:

1. Three values are listed after the expect prompt, "slow", "moderate”, and "rapid”". When ask reads these
values, it will set up a menu-type question, with the values to choose from.

2. Following the help label, is a value in the form of a string, "A soil survey of the proposed reservoir...". This is
to be the help message displayed when the F1 key is pressed when the question is asked. To include why
information in a question property structure, use the same method as for help. To view why information while
answering a question, the user presses the F2 key.

3. The third difference is the value SINGLEVALUED following the value-type label. This tells the ask function
to allow the user to select only one of the expect choices.

Example 2’s question property structure produces a question with a menu-type answer selection (Figure 1). To
answer the question, the user points to a selection with a mouse or uses the up/down arrow keys to highlight a
choice, then the enter key to select the highlighted choice. The selection is returned to a CLIPS rule for processing.

Example 3 is a question property structure that will trigger ask to create a question that asks the user to input a
number. This was done by setting the value-type value to NUMERIC. Since the expected answers on many ques-
tions asking for numerical input will fall within some range, it is logical to set the range values. In this case, if the
user tries to enter a number outside the range of 1 to 10000, ask will inform the user of the range imposed and
prompt the user to try again.

Example 3 offers two types of help to the user, text and graphic. The text can be seen following the help label.
The name of the graphic image file, "area.hip" appears following the label ghelp. "Area.hlp” is the name of the
graphic image file to be shown to the end-user if help is requested.

Example 3.

(surface-area

prompt

"What is the surface area of the reservoir, in acres,
if the water in the reservoir is at its normal depth?"
expect

help

"To determine the surface area of the proposed reservoir
at its normal depth, a survey of the area or a blown-up
USGS map of the reservoir site is needed. A planimeter
should be used to determine the area from the survey or map."
why

value

value-type NUMERIC

default

range 1 10000

certainty-range

unknown

gprompt

ghelp area.hlp

gwhy

)

463
Purdue Interface - 6

Example 4.

(water-use

prompt

"What is the intended use of the water that will be impounded
in the reservoir?"

expect

water-supply recreation flood-control

help

"More than one of the expected values can be selected.”
why

value

value-type MULTIVALUED

default

range

certainty-range

unknown YES

gprompt

ghelp

gwhy

)

Example 4 causes the ask function 10 generate a question menu that allows the user to choose more than one
option, because the value for value-type is set to MULTIVALUED. Another feature of the question is that it offers
the option "unknown" in the menu, as well as the listed expect options "water-supply”, "recreation”, and "flood-
control”. This is because the value "YES" appears after the label "unknown".

To answer this question with multiple answers, the user selects choices by highlighting a choice, and pressing
the right arrow key. This "marks” the highlighted selection. (Inversely, if the left arrow key is pressed, a
highlighted choice is "un-marked”). Other choices can be highlighted and marked. When enter is pressed, all
choices that are highlighted or marked are returned to CLIPS as the answer.

Example 5. An Example Program Using Ask

{deffacts menus

(site-name :
...rest of question property structure...)
(seepage-rate

...rest of question property structure...)
(surface-area

...rest of question property structure...)
(water-use

...rest of question property structure...))

(defrule interrogator-rule
7d <-(?question-name prompt $?question-prop-strct)
=>
(bind ?result (ask $?question-prop-strct))
(assert (?question-name ?result))
(retract ?d))

464 Purdue Imerface - 7

Points of Interest

Our example program consists of only four facts (Examples 1 through 4) and one rule. For this reason it is
practical to put all the necessary information in one knowledge base file. The CLIPS command, deffacts, defines
information to be loaded as facts. (There are other ways to load or enter facts into the CLIPS knowledge base,
which we will not concem ourselves with here).

The "interrogator" Rule

The function of the only rule in our ES is to find the question property structure facts, call ask to get an answer
from the user, and then assert that answer as a fact in the knowledge base (also called the fact-list). This rule is
used in all knowledge bases that use the interface and will call the ask function for all question property structure
facts.

The Show Function

The show function provides a means to display text to the user. Its primary use in an ES is displaying results to
the end-user. The text may be stored in a CLIPS fact or in a text file. In either case, show is passed text, which it
parses into lines to fit in a display box on the screen. The user pages through the text until all has been shown.

Example 6. A fact and rule used to invoke show

(results show "The numerical rating of the site for use as a

dam site is: -100. The ratings range from -100 to 100 with

100 being the best possible rating of a site for the construction
of a dam and reservoir.")

{defrule show-results
(declare (salience -1000))
(? show $7?x)
->
(show $7x))

Example 6 shows a rule and a fact that would match the conditions of the rule. Presumably the fact shown was
created during the end-users consultation with the ES. The (salience -1000) would give the nule a low
priority to fire, thus effectively holding the showing of results until the end of the consultation. The rest of the rule
matches a condition with the fact, setting the variable $?x to the textual contents of the fact. The action statement,
(show $7?x), calls the show function and passes the fact’s contents. '

The Title Function

Another accessory interface function is title, which can be passed five strings of text to be displayed as a title
screen. The first four lines are centered and displayed in a box drawn on the screen, and the fifth allows for the
optional display of a copyright note at the bottom of the title box.

465
Purduc lmierface - 8

Example 7. A fact and rule used to invoke title.

(dss-title title "DSS: Dam Site Selector" "Agricultural Engineering"
"purdue University" "Bernie Engel Dave Beasley"™
"Copyright 1989 Purdue Research Foundation")

(defrule display-title
{declare (salience 1000))
(? title $7?x)

->
(title §?2x))

Example 7 illustrates that the title function is used much the same as the show function. One difference is how
title’s text inputs are broken into separate strings, 1o indicate to the program what is to appear on each of the avail-
able title screen lines (Figure 2). The only other noticeable difference is salience which is set to /000, to insure that
displaying the title screen is a high priority, since it should be the first thing the end-user sees.

DSS: Dam Site Selector
Agricultural Engineering

Purdue University

Bemic Engel Dave Beasley

Copyright 1989 Purdue Research Foundation

Figure 2. A title screen produced by Example 7.

Programming Notes

The development of the interface functions was done on a PC-AT, using the "C" language. The source code of
the interface programs and CLIPS was compiled and linked together to make a customized execuzable CLIPS pro-
gram. The excecutable program runs on IBM PC-compatible machines. Knowledge engineers may then develop ES
using the customized CLIPS shell, making use of the additional functions ask, show, and title.

466
Purdue Intexface - 9

General Interface

A more general purpose version of the interface was developed by re-writing portions of the PC interface func-
tions. The general purpose interface will work on any machine that runs CLIPS. As stated earlier, one of the rea-
sons for moving to CLIPS was because of its ability to run on a wide variety of machines. The general interface
version uses numbered menus with items selected by typing the number associated with the menu item. It does not
allow the use of graphics nor does it use boxes around text as the PC version. CLIPS knowledge bases function
identical for either interface, allowing applications to operate on a variety of machines.

Interface Application

The interface functions have been used in the development and conversion of several ES. Four of the ES that
were transformed from commercial development/delivery tool formats into CLIPS are DAM SITE SELECTOR
(DSS) [3], DOUBLE-CROP [4], MELON {5], and the GRAIN MARKETING ADVISOR (GMA) [6]. DAM SITE
SELECTOR logically rates potential dam sites and provides an explanation of the factors influencing that rating.
DOUBLE-CROP assists with the decision making processes in managing double crop soybeans following winter
wheat. MELON assists muskmelon producers with proper management of their crop and with diagnosis and treat-
ment of diseases. The GRAIN MARKETING ADVISOR assists grain producers in the selection of the appropriate
grain marketing strategy for their situation. These knowledge bases in their original format required a commercial
runtime tool to operate. After the transformation process, these knowledge bases run without a commercial tool and
will run on a wider variety of computers. Minor information is lost in the transformation process, but other infor-
mation is gained [7]. Additional details describing the knowledge base transformation process are provided by
Engel et al. [7].

Conclusions

A PC-based end-user interface package has been created and integrated into the CLIPS ES development and
run-time tool. CLIPS lacks an easy-to-use end-user interface development tool commonly found in many commer-
cial ES development shells. The end-user interface development package has successfully been used to add inter-
faces to several CLIPS ES, in transformed knowledge bases, and in the development of new CLIPS ES. A similar
set of C-based functions that are more general and thus will run on UNIX and other machines have also been
developed and tested.

Benefits gained by using the parameter-driven interface package include:
e Less programming time is needed to complete the development of an application.

« Developers need not worry about many of the details of screen control or other output device-dependent prob-
lems.

« Uniformity and modularity is improved across the various programs developed that utilize the interface pack-
age.

467
Purdue Inerface - 10

References

. Kendall, Kenneth, & Kendall, Julie 1988. Systems Analysis and Design. Prentice-Hall, Inc. Englewood Cliffs,
NJ.

. Faneud, Ross, & Kirk, Steven 1988. A UIMS for Building Metaphoric User Interfaces. In James A. Hender (ed.),
Expert Systems: The User Interface, Norwood, NJ:Ablex.

. Engel, B.A. and D.B. Beasley. 1988. DSS: A dam site selector expert system. In D. Hay (ed.), Planning Now
for Irrigation and Drainage in the 21st Century, American Society of Civil Engineers, New York, New
York. p. 553-560.

. Halterman, S.T., J.R. Barrett, and M.L. Swearingin. (1988). “"Double Cropping Expert System”, in the TRAN-
SACTIONS of the ASAE, 31(1):234-239.

. Latin, R., G.E. Miles, J.C. Rettinger, and J.R. Mitchell. (1989). "An Expert Sysxém for Diagnosing Muskmelon
Disorders”, in Plant Disease, vol. 73.

. Thieme, R.H., J.W. Uhrig, R.M. Peart, A.D. Whittaker, and J.R. Barrett. (1987). "Expert System Techniques
Applied t0 grain Marketing Analysis”, in Computers and Electronics in Agriculture 1:299-308.

. Engel, B.A., C. Baffaut, J.R. Barrett, J.B. Rogers, D.D. Jones. 1990. Knowledge transformation. Applied
Artificial Intelligence 4:67-80.

468
Purdue Interface - 1]

Table 1. The ask function question property structure requirements.

Propenty
Label Uses/functions/requirements

prompt The prompt label must always be followed by a string value, which is the question to be asked of the user.

expect “munﬂudumﬁwmponuuhnmybeprwidedforhnmmdtooaefrom. Ask will present the alter-
natives in the form of a menu. 1f the expect label is not followed by allematives, ask sssumes it is not to con-
struct a multiple<chaice answer in the form of a menu, bt instead will assume that the format will be user input
of a number or text

help An optional string following this label is additional information about the topic of the question that may be of
help 10 the user to understand the question or explain how it is 1o be answered. The Aelp label may be followed
by nothing, or the help text string.

why An optional string following this label informs the user why the information requested by the question is impor-
tant. The why label may be followed by nothing, or the why text in quotes.

value This pﬁwny is ignored by the ask function. However, a single-field value may be stored in the slot following
this iabel.

value-type When the expect propenty is followed by alternative answers, ask will prepare & menu from which the user may
choose among the altematives. The value-fype property allows the knowiedge engineer 10 indicale whether the
given question may be answered by only one or more-than-one of the altematives. The value-fype propenty may
also be used 10 indicate a numerical input is 10 be expected. Possible valuves for the value-type propeny are
SINGLEVALUED, which indicates only one selection is allowed; MULTIVALUED, which means the user may
choose one or more aliematives; and NUMERIC, meaning the user is 10 input a number. If NUMERIC is
specified, there should be no expect values. If this property is left blank, SINGLEVALUED is assumed.

default This propesty is ignored by the ask function. A single-field value for default may be stored in the slot following
this label.

range Whmmekmledgcmﬁmrwhhulhemrwm-nmuwm-wwaqmﬁmmdmedswmmulhe
range of values the user may enter, the range property should be used. The values for this property should be
two numbers separated by a blank. The ask function will vequire the user's answer Lo be between the 1wo
numbers. If value-rype is NUMERIC and no range is set, ask will allow any number between -1000000000 and
1000000000. If the desired type of question is not to be numerical input, the range values must be blank. Also,
no expeci values are allowed in a question where numerical input is desired.

certainty-range This propeny is ignored by the ask function, but the label ceriainty-range must be here. Two numerical values
may be swored in slots following this label.

unknown This property can be used if the knowledge engineer wishes wnnown 10 be included as one of the menu aliema-
tives. If followed by the value of yes, the option snknown will be added 1o list of altematives.

gprompt lhhequelﬁminouuagnphiampt.mmﬂmhbellhwldbefdlowedbylheﬁlenmofmitm;e.
ghelp If the question is to use a graphics help, then this label should be followed by the file name of the image.
gwhy lflhequeaﬁminouua.nphiawhy.lhmﬂmhbdshaxldhefollowedbymeﬁlemo!lhemge.

469 Purdue Interface - 12

